Second order glidande medelvärde process


Auto-regressionen och det rörliga genomsnittsvärdet Vi undersöker några relationer i andra ordningens egenskaper av en kausal auto-regression och en inverterbar rörlig genomsnittsprocess med samma polynom. Vi avslöjar att den inverse variansmatrisen för slumpmässiga variabler från auto-regressionen är lika med en villkorlig variationsmatris av gaussiska slumpvariabler från det rörliga genomsnittsvärdet och vice versa. Medan den inverse variansmatrisen för auto-regressionen kan skrivas uttryckligen lyckas vi skriva ned den exakta Gaussiska sannolikheten för konsekutiva observationer från den rörliga genomsnittsprocessen, genom att använda egenskaperna hos auto-regressionen. Gaussisk sannolikhet Innovationsalgoritm Inverse variansmatris Copyright kopia 2010 Elsevier B. V. Alla rättigheter reserverade. Cookies används av denna webbplats. Mer information finns på sidan Cookies. Copyright 2017 Elsevier B. V. eller dess licensgivare eller bidragsgivare. ScienceDirect är ett registrerat varumärke som tillhör Elsevier B. V.2.1 Flytta genomsnittsmodeller (MA modeller) Tidsseriemodeller som kallas ARIMA-modeller kan innefatta autoregressiva termer och eller rörliga genomsnittsvillkor. I vecka 1 lärde vi oss en autoregressiv term i en tidsseriemodell för variabeln x t är ett fördröjt värde av x t. Till exempel är en lag 1-autoregressiv term x t-1 (multiplicerad med en koefficient). Denna lektion definierar glidande medelvärden. En glidande medelfrist i en tidsseriemodell är ett tidigare fel (multiplicerat med en koefficient). Låt (wt overset N (0, sigma2w)), vilket betyder att wt är identiskt oberoende fördelat, var och en med en normal fördelning med medelvärde 0 och samma varians. Den första ordningens rörliga genomsnittsmodell, betecknad med MA (1) är (xt mu wt theta1w) Den andra ordens rörliga genomsnittsmodellen, betecknad med MA (2) är (xt mu wt theta1w theta2w) , betecknad med MA (q) är (xt mu wt theta1w theta2w punkter thetaqw) Not. Många läroböcker och programvara definierar modellen med negativa tecken före villkoren. Detta ändrar inte de allmänna teoretiska egenskaperna hos modellen, även om den vrider de algebraiska tecknen på uppskattade koefficientvärden och (unsquared) termer i formler för ACF och variationer. Du måste kontrollera din programvara för att kontrollera om negativa eller positiva tecken har använts för att korrekt beräkna den beräknade modellen. R använder positiva tecken i sin underliggande modell, som vi gör här. Teoretiska egenskaper hos en tidsserie med en MA (1) modell Observera att det enda nonzero-värdet i teoretisk ACF är för lag 1. Alla andra autokorrelationer är 0. Således är ett prov ACF med en signifikant autokorrelation endast vid lag 1 en indikator på en möjlig MA (1) modell. För intresserade studenter är bevis på dessa egenskaper en bilaga till denna handout. Exempel 1 Antag att en MA (1) modell är x t10 w t .7 w t-1. var (överskridande N (0,1)). Således är koefficienten 1 0,7. Den teoretiska ACF ges av En plot av denna ACF följer. Den visade ploten är den teoretiska ACF för en MA (1) med 1 0,7. I praktiken ger ett prov vanligen vanligtvis ett så tydligt mönster. Med hjälp av R simulerade vi n 100 provvärden med hjälp av modellen x t 10 w t .7 w t-1 där vikt N (0,1). För denna simulering följer en tidsserieplot av provdata. Vi kan inte berätta mycket från denna plot. Provet ACF för den simulerade data följer. Vi ser en spik vid lag 1 följt av allmänt icke-signifikanta värden för lags över 1. Observera att provet ACF inte matchar det teoretiska mönstret för den underliggande MA (1), vilket är att alla autokorrelationer för lags över 1 kommer att vara 0 . Ett annat prov skulle ha ett något annorlunda prov ACF som visas nedan, men skulle troligen ha samma breda funktioner. Terapeutiska egenskaper för en tidsreaktion med en MA (2) modell För MA (2) modellen är teoretiska egenskaper följande: Observera att de enda nonzero-värdena i teoretisk ACF är för lags 1 och 2. Autokorrelationer för högre lags är 0 . En ACF med signifikanta autokorrelationer vid lags 1 och 2, men icke-signifikanta autokorrelationer för högre lags indikerar en möjlig MA (2) modell. iid N (0,1). Koefficienterna är 1 0,5 och 2 0,3. Eftersom det här är en MA (2), kommer den teoretiska ACF endast att ha nonzero-värden endast på lags 1 och 2. Värdena för de två icke-oberoende autokorrelationerna är A-plot av den teoretiska ACF följer. Såsom nästan alltid är fallet kommer provdata inte att verka så perfekt som teori. Vi simulerade n 150 provvärden för modellen x t 10 w t .5 w t-1 .3 w t-2. var vet N (0,1). Tidsserierna av data följer. Som med tidsserien för MA (1) provdata kan du inte berätta mycket för det. Provet ACF för den simulerade data följer. Mönstret är typiskt för situationer där en MA (2) modell kan vara användbar. Det finns två statistiskt signifikanta spikar vid lags 1 och 2 följt av icke-signifikanta värden för andra lags. Observera att provet ACF på grund av provtagningsfel inte exakt matchade det teoretiska mönstret. ACF för General MA (q) Modeller En egenskap hos MA (q) modeller är generellt att det finns icke-oberoende autokorrelationer för de första q-lagsna och autokorrelationerna 0 för alla lags gt q. Icke-unikhet av koppling mellan värden på 1 och (rho1) i MA (1) Modell. I MA (1) - modellen, för något värde av 1. den ömsesidiga 1 1 ger samma värde. Använd exempelvis 0,5 för 1. och använd sedan 1 (0,5) 2 för 1. Du får (rho1) 0,4 i båda fallen. För att tillfredsställa en teoretisk restriktion kallad invertibility. vi begränsar MA (1) - modellerna till att ha värden med absolutvärdet mindre än 1. I exemplet just givet är 1 0,5 ett tillåtet parametervärde, medan 1 10,5 2 inte kommer att. Omvändbarhet av MA-modeller En MA-modell sägs vara omvändbar om den är algebraiskt ekvivalent med en konvergerande oändlig ordning AR-modell. Genom att konvergera menar vi att AR-koefficienterna minskar till 0 när vi flyttar tillbaka i tiden. Omvändbarhet är en begränsning programmerad i tidsserieprogramvara som används för att uppskatta koefficienterna för modeller med MA-termer. Det är inte något vi söker efter i dataanalysen. Ytterligare information om invertibilitetsbegränsningen för MA (1) - modeller ges i bilagan. Avancerad teorinotation. För en MA (q) modell med en specificerad ACF finns det bara en inverterbar modell. Det nödvändiga villkoret för invertibilitet är att koefficienterna har värden så att ekvationen 1- 1 y-. - q y q 0 har lösningar för y som faller utanför enhetens cirkel. R-kod för exemplen I exempel 1 ritade vi den teoretiska ACF av modellen x t10 wt. 7w t-1. och sedan simulerade n 150 värden från denna modell och plottade provets tidsserie och provet ACF för de simulerade data. R-kommandon som användes för att plotta den teoretiska ACF var: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags av ACF för MA (1) med theta1 0,7 lags0: 10 skapar en variabel som heter lags som sträcker sig från 0 till 10. plot (lags, acfma1, xlimc (1,10), ylabr, typh, huvud ACF för MA (1) med theta1 0,7) abline (h0) adderar en horisontell axel till plottet Det första kommandot bestämmer ACF och lagrar det i ett objekt namnet acfma1 (vårt val av namn). Plot-kommandot (det tredje kommandot) plottar jämfört med ACF-värdena för lags 1 till 10. ylab-parametern markerar y-axeln och huvudparametern lägger en titel på plotten. För att se de numeriska värdena för ACF använder du bara kommandot acfma1. Simuleringen och diagrammen gjordes med följande kommandon. xcarima. sim (n150, lista (mac (0.7))) Simulerar n 150 värden från MA (1) xxc10 lägger till 10 för att göra medelvärdet 10. Simulering standardvärden betyder 0. plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF för simulerad provdata) I exempel 2 ritade vi den teoretiska ACF av modellen xt 10 wt5 w t-1, 3 w t-2. och sedan simulerade n 150 värden från denna modell och plottade provets tidsserie och provet ACF för de simulerade data. De R-kommandon som användes var acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typh, huvud ACF för MA (2) med theta1 0,5, theta20.3) abline (h0) xcarima. sim (n150, lista (mac (0,5, 0,3)) xxc10 plot (x, typeb, huvudsimulerad MA (2) serie) acf (x, xlimc (1,10) mainACF för simulerade MA (2) data) Bilaga: Bevis på egenskaper hos MA (1) För intresserade studenter, här är bevis för teoretiska egenskaper hos MA (1) modellen. Varians: (text (xt) text (mu wt theta1 w) 0 text (wt) text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) När h 1, föregående uttryck 1 w 2. För varje h 2, föregående uttryck 0 . Orsaken är att, per definition av vägtons oberoende. E (w k w j) 0 för någon k j. Vidare, eftersom w t har medelvärdet 0, E (w jw j) E (wj 2) w 2. För en tidsserie, Applicera detta resultat för att få ACF ges ovan. En inverterbar MA-modell är en som kan skrivas som en oändlig ordning AR-modell som konvergerar så att AR-koefficienterna konvergerar till 0 när vi rör sig oändligt tillbaka i tiden. Visa väl omvändbarhet för MA (1) modellen. Vi ersätter sedan förhållandet (2) för w t-1 i ekvation (1) (3) (zt wt theta1 (z-tetww) wt theta1z-tetanw) Vid tid t-2. ekvationen (2) blir Vi ersätter sedan förhållandet (4) för w t-2 i ekvation (3) (zt wt theta1z-teteta21wt theta1z-teteta21 (z-tetww) wt theta1z-teteta12z theta31w) Om vi ​​skulle fortsätta oändligt) skulle vi få oändlig ordning AR-modellen (zt wt theta1z-theta21z theta31z-tetta41z punkter) Observera dock att om koefficienterna som multiplicerar lagren av z ökar (oändligt) i storlek när vi flyttar tillbaka i tid. För att förhindra detta behöver vi 1 lt1. Detta är förutsättningen för en inverterbar MA (1) modell. Oändlig ordning MA-modell I vecka 3 ser du att en AR (1) - modell kan konverteras till en oändlig ordning MA-modell: (xt - mu wt phi1w phi21w prickar phik1 w dots sum phij1w) Denna summering av tidigare vita ljudvillkor är känd som orsakssammanställning av en AR (1). Med andra ord är x t en special typ av MA med ett oändligt antal termer som går tillbaka i tiden. Detta kallas en oändlig ordning MA eller MA (). En ändlig ordning MA är en oändlig ordning AR och någon ändlös ordning AR är en oändlig ordning MA. Minns i vecka 1 noterade vi att ett krav på en stationär AR (1) är att 1 lt1. Låt beräkna Var (x t) med hjälp av kausalrepresentationen. Det här sista steget använder ett grundläggande faktum om geometriska serier som kräver (phi1lt1) annars skiljer serien. NavigationIntroduction to ARIMA: nonseasonal modeller ARIMA (p, d, q) prognoser ekvation: ARIMA-modeller är i teorin den vanligaste klassen av modeller för prognoser för en tidsserie som kan göras för att vara 8220stationary8221 genom differentiering (om nödvändigt), kanske i samband med olinjära transformationer, såsom loggning eller avflöde (om nödvändigt). En slumpmässig variabel som är en tidsserie är stationär om dess statistiska egenskaper är konstanta över tiden. En stationär serie har ingen trend, dess variationer kring dess medelvärde har en konstant amplitud, och det vinklar på ett konsekvent sätt. d. v.s. dess kortsiktiga slumpmässiga tidsmönster ser alltid ut i statistisk mening. Det sistnämnda tillståndet betyder att dess autokorrelationer (korrelationer med sina egna tidigare avvikelser från medelvärdet) förblir konstanta över tiden, eller likvärdigt, att dess effektspektrum förblir konstant över tiden. En slumpmässig variabel i denna blankett kan ses som en kombination av signal och brus, och signalen (om en är uppenbar) kan vara ett mönster av snabb eller långsam mean reversion eller sinusformig oscillation eller snabb växling i tecken , och det kan också ha en säsongskomponent. En ARIMA-modell kan ses som en 8220filter8221 som försöker separera signalen från bruset, och signalen extrapoleras därefter i framtiden för att få prognoser. ARIMA-prognosekvationen för en stationär tidsserie är en linjär (d. v.s. regressionstyp) ekvation där prediktorerna består av lags av de beroende variabla andorlagren av prognosfel. Det vill säga: Förutsatt värdet på Y är en konstant och en viktad summa av ett eller flera nya värden av Y och eller en vägd summa av ett eller flera nya värden av felen. Om prediktorerna endast består av fördröjda värden på Y. Det är en ren autoregressiv (8220self-regressed8221) modell, som bara är ett speciellt fall av en regressionsmodell och som kan förses med standard regressionsprogram. Exempelvis är en första-order-autoregressiv (8220AR (1) 8221) modell för Y en enkel regressionsmodell där den oberoende variabeln bara Y är försenad med en period (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Om en del av prediktorerna är felaktiga, är en ARIMA-modell inte en linjär regressionsmodell eftersom det inte går att ange 8220last period8217s error8221 som en oberoende variabel: felen måste beräknas periodvis när modellen är monterad på data. Tekniskt sett är problemet med att använda fördröjda fel som prediktorer att modellen8217s förutsägelser inte är linjära funktioner för koefficienterna. även om de är linjära funktioner av tidigare data. Så koefficienter i ARIMA-modeller som innehåller fördröjda fel måste uppskattas genom olinjära optimeringsmetoder (8220hill-climbing8221) istället för att bara lösa ett system av ekvationer. Akronymet ARIMA står för Auto-Regressive Integrated Moving Average. Lags av den stationära serien i prognosen ekvationen kallas quotautoregressivequot termer, lags av prognosfel kallas quotmoving averagequot termer och en tidsserie som behöver differentieras för att göras stationär sägs vara en quotintegratedquot-version av en stationär serie. Slumpmässiga och slumpmässiga modeller, autoregressiva modeller och exponentiella utjämningsmodeller är alla speciella fall av ARIMA-modeller. En nonseasonal ARIMA-modell klassificeras som en quotARIMA (p, d, q) kvotmodell där: p är antalet autoregressiva termer, d är antalet icke-säsongsskillnader som behövs för stationaritet och q är antalet fördröjda prognosfel i prediksionsekvationen. Prognosekvationen är konstruerad enligt följande. Först, låt y beteckna d: s skillnad på Y. Det betyder: Observera att den andra skillnaden i Y (d2-fallet) inte är skillnaden från 2 perioder sedan. Det är snarare den första skillnaden-av-första skillnaden. vilken är den diskreta analogen av ett andra derivat, dvs den lokala accelerationen av serien i stället för dess lokala trend. När det gäller y. Den allmänna prognostiseringsekvationen är: Här definieras de rörliga genomsnittsparametrarna (9528217s) så att deras tecken är negativa i ekvationen, enligt konventionen införd av Box och Jenkins. Vissa författare och programvara (inklusive R-programmeringsspråket) definierar dem så att de har plustecken istället. När faktiska siffror är anslutna till ekvationen finns det ingen tvetydighet, men det är viktigt att veta vilken konvention din programvara använder när du läser utmatningen. Ofta anges parametrarna av AR (1), AR (2), 8230 och MA (1), MA (2), 8230 etc. För att identifiera lämplig ARIMA-modell för Y. börjar du med att bestämma sorteringsordningen (d) behöver stationera serierna och ta bort säsongens bruttoegenskaper, kanske i kombination med en variationsstabiliserande transformation, såsom loggning eller avflöde. Om du slutar vid denna tidpunkt och förutsäger att den olika serien är konstant, har du bara monterat en slumpmässig promenad eller slumpmässig trendmodell. Den stationära serien kan emellertid fortfarande ha autokorrelerade fel, vilket tyder på att vissa antal AR-termer (p 8805 1) och eller några nummer MA-termer (q 8805 1) också behövs i prognosekvationen. Processen att bestämma värdena p, d och q som är bäst för en given tidsserie kommer att diskuteras i senare avsnitt av anteckningarna (vars länkar finns längst upp på denna sida), men en förhandsvisning av några av de typerna av nonseasonal ARIMA-modeller som vanligtvis förekommer ges nedan. ARIMA (1,0,0) första ordningens autoregressiva modell: Om serien är stationär och autokorrelerad kanske den kan förutsägas som en multipel av sitt eget tidigare värde plus en konstant. Prognosekvationen i detta fall är 8230, som Y är regresserad i sig själv fördröjd med en period. Detta är en 8220ARIMA (1,0,0) constant8221 modell. Om medelvärdet av Y är noll, skulle den konstanta termen inte inkluderas. Om lutningskoefficienten 981 1 är positiv och mindre än 1 i storleksordningen (den måste vara mindre än 1 i storleksordningen om Y är stillastående), beskriver modellen medelåterkallande beteende där nästa period8217s värde bör förutses vara 981 1 gånger som långt ifrån medelvärdet som detta period8217s värde. Om 981 1 är negativ förutspår det medelåterkallande beteende med teckenväxling, dvs det förutspår också att Y kommer att ligga under den genomsnittliga nästa perioden om den är över medelvärdet denna period. I en andra-ordningsautoregressiv modell (ARIMA (2,0,0)) skulle det finnas en Y t-2 term till höger också, och så vidare. Beroende på tecken och storheter på koefficienterna kan en ARIMA (2,0,0) modell beskriva ett system vars medföljande reversering sker på ett sinusformigt oscillerande sätt, som en massans rörelse på en fjäder som utsätts för slumpmässiga stötar . ARIMA (0,1,0) slumpmässig promenad: Om serien Y inte är stillastående är den enklaste möjliga modellen för en slumpmässig promenadmodell, vilken kan betraktas som ett begränsande fall av en AR (1) - modell där den autogegrativa koefficienten är lika med 1, det vill säga en serie med oändligt långsam medelbackning. Förutsägningsekvationen för denna modell kan skrivas som: där den konstanta termen är den genomsnittliga period-till-period-förändringen (dvs. den långsiktiga driften) i Y. Denna modell kan monteras som en icke-avlyssningsregressionsmodell där första skillnaden i Y är den beroende variabeln. Eftersom den innehåller (endast) en nonseasonal skillnad och en konstant term, klassificeras den som en quotARIMA (0,1,0) modell med constant. quot. Den slumpmässiga walk-without-drift-modellen skulle vara en ARIMA (0,1, 0) modell utan konstant ARIMA (1,1,0) annorlunda första ordningens autoregressiva modell: Om fel i en slumpmässig promenadmodell är autokorrelerade kanske problemet kan lösas genom att lägga en lag av den beroende variabeln till prediktionsekvationen - - ie genom att regressera den första skillnaden av Y på sig själv fördröjd med en period. Detta skulle ge följande förutsägelsesekvation: som kan omordnas till Detta är en första-orders autregressiv modell med en ordning av icke-säsongsskillnader och en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) utan konstant enkel exponentiell utjämning: En annan strategi för korrigering av autokorrelerade fel i en slumpmässig promenadmodell föreslås av den enkla exponentiella utjämningsmodellen. Minns att för några icke-stationära tidsserier (t ex de som uppvisar bullriga fluktuationer kring ett långsamt varierande medelvärde), utförs slumpmässiga promenadmodellen inte lika bra som ett glidande medelvärde av tidigare värden. Med andra ord, istället för att ta den senaste observationen som prognosen för nästa observation, är det bättre att använda ett genomsnitt av de sista observationerna för att filtrera bort bullret och mer exakt uppskatta det lokala medelvärdet. Den enkla exponentiella utjämningsmodellen använder ett exponentiellt vägt glidande medelvärde av tidigare värden för att uppnå denna effekt. Förutsägningsekvationen för den enkla exponentiella utjämningsmodellen kan skrivas i ett antal matematiskt ekvivalenta former. varav den ena är den så kallade 8220error correction8221-formen, där den föregående prognosen justeras i riktning mot det fel som det gjorde: Eftersom e t-1 Y t-1 - 374 t-1 per definition kan detta omskrivas som : vilket är en ARIMA (0,1,1) - utan konstant prognosekvation med 952 1 1 - 945. Det innebär att du kan passa en enkel exponentiell utjämning genom att ange den som en ARIMA (0,1,1) modell utan konstant, och den uppskattade MA (1) - koefficienten motsvarar 1-minus-alfa i SES-formeln. Minns att i SES-modellen är den genomsnittliga åldern för data i prognoserna för 1-tiden framåt 1 945. Det betyder att de tenderar att ligga bakom trender eller vändpunkter med cirka 1 945 perioder. Det följer att den genomsnittliga åldern för data i de 1-prognos framåt av en ARIMA (0,1,1) utan konstant modell är 1 (1 - 952 1). Så, till exempel, om 952 1 0,8 är medelåldern 5. När 952 1 närmar sig 1 blir ARIMA (0,1,1) utan konstant modell ett mycket långsiktigt glidande medelvärde och som 952 1 närmar sig 0 blir det en slumpmässig promenad utan driftmodell. What8217s det bästa sättet att korrigera för autokorrelation: Lägga till AR-termer eller lägga till MA-termer I de tidigare två modellerna som diskuterats ovan fixades problemet med autokorrelerade fel i en slumpmässig promenadmodell på två olika sätt: genom att lägga till ett fördröjt värde av de olika serierna till ekvationen eller lägga till ett fördröjt värde av prognosfelet. Vilket tillvägagångssätt är bäst En tumregel för denna situation, som kommer att diskuteras mer i detalj senare, är att positiv autokorrelation vanligtvis behandlas bäst genom att addera en AR-term till modellen och negativ autokorrelation behandlas vanligtvis bäst genom att lägga till en MA term. I affärs - och ekonomiska tidsserier uppstår negativ autokorrelation ofta som en artefakt av differentiering. (I allmänhet minskar differentieringen positiv autokorrelation och kan även orsaka en växling från positiv till negativ autokorrelation.) Således används ARIMA (0,1,1) - modellen, i vilken skillnad åtföljs av en MA-term, oftare än en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel exponentiell utjämning med tillväxt: Genom att implementera SES-modellen som en ARIMA-modell får du viss flexibilitet. För det första får den uppskattade MA (1) - koefficienten vara negativ. Detta motsvarar en utjämningsfaktor som är större än 1 i en SES-modell, vilket vanligtvis inte är tillåtet med SES-modellproceduren. För det andra har du möjlighet att inkludera en konstant term i ARIMA-modellen om du vill, för att uppskatta en genomsnittlig trendfri noll. ARIMA-modellen (0,1,1) med konstant har förutsägelsesekvationen: Prognoserna från den här modellen är kvalitativt likartade som i SES-modellen, förutom att banan för de långsiktiga prognoserna typiskt är en sluttande linje (vars lutning är lika med mu) snarare än en horisontell linje. ARIMA (0,2,1) eller (0,2,2) utan konstant linjär exponentiell utjämning: Linjära exponentiella utjämningsmodeller är ARIMA-modeller som använder två icke-säsongsskillnader i samband med MA-termer. Den andra skillnaden i en serie Y är inte bara skillnaden mellan Y och sig själv i två perioder, men det är snarare den första skillnaden i den första skillnaden, dvs. Y-förändringen i Y vid period t. Således är den andra skillnaden av Y vid period t lika med (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En andra skillnad av en diskret funktion är analog med ett andra derivat av en kontinuerlig funktion: det mäter kvotccelerationquot eller quotcurvaturequot i funktionen vid en given tidpunkt. ARIMA-modellen (0,2,2) utan konstant förutspår att den andra skillnaden i serien motsvarar en linjär funktion av de två sista prognosfel: som kan omordnas som: där 952 1 och 952 2 är MA (1) och MA (2) koefficienter. Detta är en generell linjär exponentiell utjämningsmodell. väsentligen samma som Holt8217s modell, och Brown8217s modell är ett speciellt fall. Den använder exponentiellt vägda glidande medelvärden för att uppskatta både en lokal nivå och en lokal trend i serien. De långsiktiga prognoserna från denna modell konvergerar till en rak linje vars lutning beror på den genomsnittliga trenden som observerats mot slutet av serien. ARIMA (1,1,2) utan konstant dämpad trend linjär exponentiell utjämning. Denna modell illustreras i de bifogade bilderna på ARIMA-modellerna. Den extrapolerar den lokala trenden i slutet av serien men plattar ut på längre prognoshorisonter för att presentera en konservatismskampanj, en övning som har empiriskt stöd. Se artikeln om varför Damped Trend worksquot av Gardner och McKenzie och artikeln "Rulequot Rulequot" av Armstrong et al. för detaljer. Det är vanligtvis lämpligt att hålla sig till modeller där minst en av p och q inte är större än 1, dvs försök inte passa en modell som ARIMA (2,1,2), eftersom det troligtvis kommer att leda till övermontering och quotcommon-factorquot-problem som diskuteras närmare i noterna om den matematiska strukturen för ARIMA-modeller. Implementering av kalkylark: ARIMA-modeller som de som beskrivs ovan är enkla att implementera på ett kalkylblad. Förutsägningsekvationen är helt enkelt en linjär ekvation som refererar till tidigare värden av ursprungliga tidsserier och tidigare värden av felen. Således kan du ställa in ett ARIMA-prognoskalkylblad genom att lagra data i kolumn A, prognosformeln i kolumn B och felen (data minus prognoser) i kolumn C. Förutsättningsformeln i en typisk cell i kolumn B skulle helt enkelt vara ett linjärt uttryck som hänvisar till värden i föregående rader av kolumnerna A och C multiplicerat med lämpliga AR - eller MA-koefficienter lagrade i celler på annat håll på kalkylbladet.

Comments